Solving partial differential equations via sparse SDP

نویسندگان

  • Martin Mevissen
  • Masakazu Kojima
  • Jiawang Nie
  • Nobuki Takayama
چکیده

To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To compute a more accurate solution, we incorporate a grid-refining method with repeated applications of the sparse SDP relaxation or Newton’s method. The main features of this approach are: (a) we can choose an appropriate objective function, and (b) we can add inequality constraints on the unknown variables and their derivatives. These features make it possible for us to compute a specific solution when the PDE has multiple solutions. Some numerical results on the proposed method applied to ordinary differential equations, PDEs, differential algebraic equations and an optimal control problem are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving partial differential equations via sparse SDP relaxations

To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To comput...

متن کامل

1342 - 2804 Solving partial differential equations via sparse SDP

To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To comput...

متن کامل

Exact solutions of a linear fractional partial differential equation via characteristics method

‎In recent years‎, ‎many methods have been studied for solving differential equations of fractional order‎, ‎such as Lie group method, ‎invariant subspace method and numerical methods‎, ‎cite{6,5,7,8}‎. Among this‎, ‎the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order‎. In this paper we apply this method f...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving a Class of Partial Differential Equations by Differential Transforms Method

‎In this work, we find the differential transforms of the functions $tan$ and‎ ‎$sec$‎, ‎and then we applied this transform on a class of partial differential equations involving $tan$ and‎ ‎$sec$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007